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Universal short-time behavior of the dynamic fully frustrated XY model

H. J. Luo,* L. Schülke, and B. Zheng
Fachbereich Physik, Universita¨t GH Siegen, D-57068 Siegen, Germany

~Received 16 May 1997; revised manuscript received 4 September 1997!

With Monte Carlo methods we investigate the dynamic relaxation of the fully frustratedXY model in two
dimensions below and at the Kosterlitz-Thouless phase transition temperature. Special attention is given to the
sublattice structure of the dynamic evolution. The short-time scaling behavior is found and universality con-
firmed. The critical exponentu is measured for different temperatures and with different algorithms.
@S1063-651X~98!05902-9#

PACS number~s!: 64.60.Ht, 75.10.Hk, 02.70.Lq, 82.20.Mj
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I. INTRODUCTION

There has been a long history of the study of the unive
scaling behavior for critical dynamics. It is well known th
there exists a universal scaling form when dynamic syste
reach equilibrium or in the long-time regime of their d
namic evolution. When a dynamic magnetic system
evolved for a sufficiently long time, the magnetization d
cays exponentially. The characteristic time scale for this
gime is tt;t2nz or tL;Lz, with t being the reduced tem
perature andL being the lattice size. Before this exponent
decay the time evolution of the magnetization obeys a po
law t2b/nz. All this universal scaling behavior can be cha
acterized by a set of three critical exponents: two static
ponentsb,n and one dynamic exponentz.

Is there universal behavior in theshort-time regimeof the
dynamic evolution? For long, the answer had been no. It
believed that the behavior of the dynamic systems in
short-time regime depends essentially on the microscopic
tails. However, it has been discovered recently that unive
scaling behavior emerges already in themacroscopicshort-
time regime, after a microscopic time scaletmic @1#. Impor-
tant is that extra critical exponents should be introduced
describe the dependence of the scaling behavior on the in
conditions @1,2# or to characterize the scaling behavior
special dynamic observables@3–5#. A typical dynamic pro-
cess is that a magnetic system initially athigh temperature
with a small initial magnetizationis suddenly quenched t
the critical temperature~without any external magnetic field!
and then released to the time evolution with a dynamics
model A @6#. A new dynamic exponentx0 has been intro-
duced to describe the scaling dimension of the initial m
netization. More surprisingly, at the beginning of the tim
evolution the magnetization undergoes a critical initial
crease@1,7,8#

M ~ t !;m0tu, ~1!

whereu is related to the scaling dimensionx0 of the initial
magnetizationm0 by u5(x02b/n)/z.

*On leave from Sichuan Union University, Chengdu, Peopl
Republic of China.
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The physical background for the initial increase of t
magnetization is not completely clear. The critical initial i
crease has little to do with the symmetry breaking below
critical temperature. Actually similar phenomena can be
served even in the case where the magnetization is no
order parameter. For the six-state clock model and theXY
model, below the Kosterlitz-Thouless phase transition te
perature no real long-range order appears. The normal m
netization is not an order parameter here. However,
power-law initial increase is still observed in numeric
simulations@9,10#.

On the other hand, in recent years much attention
been put on statistical systems with frustrations or quenc
randomness. The critical behavior of these systems ofte
quite different from that of regular systems. Due to the
vere critical slowing down, numerical simulations of the
systems are extremely difficult. In particular, our knowled
of the dynamic properties of these systems is poor.

In this paper, as an approach to the short-time dynam
of statistical systems with frustrations, we investigate n
merically the dynamic fully frustratedXY model below or at
the Kosterlitz-Thouless phase transition temperature.
concentrate our attention on the scaling behavior of the m
netization and its dependence on the initial value. Much
fort is devoted to the understanding of the special proper
induced by the sublattice structure of the ground states.
investigation of the universal short-time behavior of the d
namic systems is important not only conceptually but also
the practical sense. Numerical simulations for the Ising a
Potts models show that we may obtain already from
short-time dynamics the static critical exponents as well
the dynamic exponentz, which are normally defined and
measured in equilibrium or in the long-time regime of t
dynamic evolution@8,11,12,9,13,14#. Since our measure
ments in the short-time dynamics are always carried ou
the beginning of the time evolution and the average is re
a sample average rather than a time average based o
ergodicity assumption as in the measurements in equ
rium, the dynamic approach might be free of critical slowi
down.

In the next section the fully frustratedXY model is briefly
introduced. In Secs. III and IV numerical results are repor
for the dynamic fully frustratedXY model. Finally conclu-
sions follow in Sec. V.
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II. THE FULLY FRUSTRATED XY MODEL

The fully frustratedXY ~FFXY! model in two dimensions
can be defined by the Hamiltonian

H5K(̂
i j &

f i j SW i•SW j , ~2!

whereSW i5(Si ,x ,Si ,y) is a planar unit vector at sitei and the
sum is over the nearest neighbors. In our notation the fa
1/kT has been absorbed in the couplingK. Here f i j takes the
value11 or 21, depending on the links. A simple realiz
tion of the FFXY model is by takingf i j 521 on half of the
vertical links ~negative links! and others are11 ~positive
links!. This is shown in Fig. 1. The links marked by dotte
lines represent the negative links.

There exist two phase transitions in the FFXY model:
Kosterlitz-Thouless phase transition (XY-like! and the
second-order phase transition~Ising-like!. This is very differ-
ent from the regularXY model. Much effort has been mad
to locate the critical points for both transitions and meas
the corresponding critical exponents. In a recent paper@15#,
it is reported that theXY-like phase transition temperature
TKT51/KKT50.446, while the Ising-like phase transitio
temperatureTc51/Kc50.452. The measurements show
slight difference of these two phase transition temperatu
Earlier results for the FFXY model and its ordering dyna
ics could be found in Refs.@16–24#.

One of the most important properties of the fully fru
trated XY model is its sublattice structure of the groun
states. In the regularXY model, in the ground state all spin
orient in the same direction. However, for the FFXY mod
the lattice should be divided into four sublattices. All spins
each sublattice orient in the same direction, but the directi
for the four sublattices are different and connected in a c
tain way, as it is shown in Fig. 1. For the whole lattice, t
ground state preserves the global O~2! symmetry, i.e., spins
can rotate globally. No real long-rangeXY-like order
emerges in the FFXY model. This situation is similar to t
regularXY model. In addition to the ground state shown
Fig. 1, there is another ground state that is obtained by tr
lating the configuration in Fig. 1 by one lattice spacing in t

FIG. 1. One of the ground states for the FFXY model. Dott
lines denote negative links.
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y direction. Below the Ising-like critical temperatureTc , this
Z2 symmetry is broken. The second-order phase transi
occurs.

In this paper we study the short-time dynamic propert
of the FFXY model below and at theXY-like phase transi-
tion temperatureTKT . Below the critical temperatureTKT ,
the FFXY model remains critical in the sense that the cor
lation length keeps divergent. Therefore, a scaling form
expected even below the critical temperatureTKT . However,
the critical exponents may vary with respect to the tempe
ture. Such a phenomenon has been observed in the six-
clock model and the regularXY model@9,10#. The dynamic
properties related to the Ising-like phase transition will n
be discussed in this paper.

III. SUBLATTICE STRUCTURE
OF DYNAMIC EVOLUTION

Let us consider a dynamic relaxation process start
from an initial state witha very high temperature and sma
magnetization@1#. As a direct generalization of theXY
model, for the FFXY model the magnetization may also
defined as

MW ~ t !5
1

L2(i
SW i , ~3!

with L being the lattice size. As in case of theXY model, the
magnetization here is also not an order parameter.
achieve an initial magnetization, we introduce an initial e
ternal magnetic field, e.g., in thex direction @10#. Suppose
the initial state is at a very high temperature. The init
Hamiltonian can be written as

H052h(
i

Si ,x . ~4!

Here the factor 1/kT already has been absorbed inh and the
interaction between spins is ignored due to the very h
temperature. With this initial HamiltonianH0, we update the
initial system by use of the Metropolis algorithm until
reaches equilibrium. Then the configurations generated
this way are used as initial configurations of the dynam
system. The initial magnetization generated is

MW ~0!5~m0,0!'~h,0!, h→0. ~5!

There are, of course, many other methods to generat
initial magnetization. However, it has been demonstrated
the universal behavior does not depend on these microsc
details, i.e., how a magnetization is constructed@10#. Effects
of the microscopic details of the initial configurations a
swept away in almost one Monte Carlo time step.

After the preparation of an initial configuration, the exte
nal magnetic fieldh is removed and the system is released
a dynamic evolution of modelA below or at theXY-like
transition temperature. In this paper,the Metropolis algo-
rithm is mainly used. To confirm universality, howeve
some simulations are repeated with the heat-bath algori
in some special cases. We stop updating the dynamic sys
after 150 Monte Carlo time steps and repeat the proced
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57 1329UNIVERSAL SHORT-TIME BEHAVIOR OF THE . . .
with another initial configuration. The average is over bo
the independent initial configurations and the random nu
bers. We have performed simulations with lattice sizesL
58, 16, 32, 64, and 128. Total samples for the average
from 30 000 to 60 000, depending on lattice sizes, ini
states, and algorithms. Errors are estimated by dividing
samples into three or four groups.

In Fig. 2 the time evolution of the magnetization is di
played on a double-logarithmic scale with a solid line for t
lattice sizeL564 and the initial magnetizationm050.02.
The temperature is taken to beT50.400, which is slightly
below theXY-like transition temperatureTKT50.446 given
in Ref. @15# ~or TKT50.440(2) in@20#!. In the figureM (t) is
the x component of the magnetizationMW (t). The y compo-
nent of the magnetizationMW (t) remains zero since the initia
value is zero. The inset shows the behavior of the magn
zation at the very beginning of the time evolution. Here
Monte Carlo sweep over all sites on the lattice is defined
the time unit. From the figure we see that the magnetiza
keeps more or less constant for two or three time steps
then increases indeed. The universal power-law behavior
comes apparent after about 20–30 Monte Carlo time st
From the slope of the curve, one measures the exponeu
50.184(6). In this simulation a global uniform initial exter
nal magnetic fieldh has been applied to the whole lattice o
in other words, the initial magnetization density distributi
is uniformly generated. We call this theglobal start.

Does the sublattice structure of the ground state p
some role in the dynamic evolution? In equilibrium, it
known that theXY susceptibility should be calculated sep
rately for each sublattice since the orientations of spins
different sublattices differ. However, further understand
of the sublattice structure in numerical simulations canno
easily be achieved due to the O~2! symmetry and large fluc
tuations. In the short-time dynamics, the situation is som

FIG. 2. Time evolution of the magnetization with the glob
start forL564 andm050.02 with the Metropolis algorithm plotted
on a double-logarithmic scale.M (t) is the x component of the

magnetizationMW (t) defined in Eq.~3! and the time unit is defined
as a Monte Carlo sweep over all sites of the lattice. The solid
represents the global magnetization, while dotted lines are thos
the four sublattices. The inset shows the behavior for very sm
time t.
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what different. The O~2! symmetry is violated by the initia
magnetization. One can really measure the time evolution
the magnetization separately for each sublattice shown
Fig. 1. The two upper dotted lines in Fig. 2 represent the ti
evolution of the magnetization for the two sublattices co
nected to the positive links, while the lower two dotted lin
are those for two sublattices connected to the negative lin
It is very interesting that even though we have a global st
for sublattices connected to the positive links the magnet
tions increasefrom the beginning, while for sublattices con
nected to the negative links theydrop essentiallyin the first
time steps. This can be seen clearly from the small wind
in the figure. After about 5 Monte Carlo steps, the magn
zations on the negative links begin to increase. Within 20–
Monte Carlo time steps, all the magnetizations, either on
positive links or on the negative links, tend to thesameuni-
versal power-law behavior even though their magnitudes
main different.

This means that the microscopic time scale for our sys
is tmic;20–30. The behavior of the dynamic system with
tmic is not universal. It depends on microscopic details, e.
initial configurations, algorithms, updating schemes, latt
types, and the interaction, as well as on which sublattice
observable is measured. The universal power-law beha
in Eq. ~1! does not apply in this time period.

Without an external magnetic field, the magnetization
equilibrium should be zero. One would naturally ask ho
long the initial increase of the magnetization will last a
how M (t) goes to zero after the initial increase. A systema
analysis of this has been given, for example, for the Is
systems in Refs.@25,7#. The time scale for the critical initia
increase is proportional tot0;m0

2z/x0. After that, the magne-
tization crosses over to the power-law decayt2b/nz and then
finally to the exponential decrease in the long-time regime
the dynamic evolution. The time scalet0 becomes infinite in
the limit m050 and therefore the initial magnetization ca
also leave its trace in the long-time regime. Actually, t
time period for the critical initial increase is already ve
long even for a finitem0. To show this, we have carried ou
a simulation for the FFXY model up to 20 000 Monte Car
steps withm050.1. A large lattice sizeL5256 has been
taken in order to avoid finite-size effects. The result is sho
in Fig. 3. The lower solid line represents the global mag
tization, while the upper and lower dotted lines are those
the averaged magnetizations on the positive links and
negative links, respectively. Here we see that even for a
so small valuem050.1, the magnetizations keep the powe
law increase until a time between 1000 and 2000 Mo
Carlo steps. After that the magnetizations begin to dev
from the power law. From this, we may also realize ho
difficult it is to generate independent configurations. The n
merical simulation of the FFXY model in traditional ways
essentially hampered by a critical slowing down.

Now we return to the sublattice structure of the dynam
evolution. What is the relation between the magnetizatio
on the positive links and the negative links? In Fig. 4 t
ratio r (t) of the magnetization averaged over the two sub
tices on the positive links and that on the negative links
plotted with a solid line. The data are taken from those
Fig. 2. The ratior (t) stabilizes to a constant value ver
quickly within 10 time steps. Averaging this ratio in a tim
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1330 57H. J. LUO, L. SCHÜLKE, AND B. ZHENG
interval@10,150#, we getr 52.4147(8). What is this ratio? In
the ground state drawn in Fig. 1, the angles between spin
the positive links and thex axis is 6p/8, while those be-
tween spins on the negative links and thex axis are63p/8.
The ratior is nothing but the ratio of thex components of
the spins on both the positive links and the negative lin
We see this by calculatingr th5cos(p/8)/cos(3p/8)
52.4142. The consistence betweenr th and the measured on
r 52.4147(8) is remarkable.

The fact thatr takes a constant value as in the grou
state does not depend on the initial value of the magnet
tion. It is also not a property only in the initial stage of th
time evolution. In Fig. 3 the upper solid line shows the ra
r (t) measured in the simulation forL5256 with m050.1
and up to the time steps 20 000. We can see that ther (t)
keeps a constant value aroundr th until the time limit of our
simulation where the magnetizationM (t) has already devi-

FIG. 3. Time evolution of the magnetization with the glob
start forL5256 andm050.1 with the Metropolis algorithm plotted
on a double-logarithmic scale. The lower solid line represents
global magnetization. The two dotted links are the magnetizat
for the positive links and the negative links, and the upper solid
is the ratior (t) of these two.

FIG. 4. Ratior (t) for different initial states.
on

.

a-

ated from the power-law increase as shown in the same
ure. For a better understanding of the phenomenon, we h
also measured the evolution of the angular distributionP(u)
of the spins in the simulation. The angleu is that between the
spin and thex direction. In Fig. 5 two solid lines are th
initial angular distributions for the spins on the positive a
negative links. They show Gaussian-like shape with peak
zero. For increasing time both distributions behave quite
ferently: The distribution on the positive links becom
sharper, while in contrast to that the distribution on the ne
tive links becomes flatter, where the peak value even
creases during the first time steps belowt520, and then with
increasing time the distribution gradually splits into tw
peaks. Although this behavior might reflect some effect
the ground state, the results show that the spin configurat
in the dynamic system are not the same as those of
ground state. How can the behavior ofr (t) be explained?
Our argument is that this is due to a similar scaling behav
of the magnetizations on positive links@M p(t)# and on nega-
tive links @Mn(t)#. According to Janssen, Schaub, a
Schmittmann@1#, the scaling relation of the magnetizatio
below the critical temperatureTKT is

M ~ t,m0!5b2h/2M ~b2zt,bx0m0!. ~6!

For two-dimensionalXY systems the anomalous dimensio
is written ash/2. Due to the scaling relationh/2 is equal to
b/n in two-dimensional Ising systems. The dynamic exp
nentz for theXY systems below the critical temperatureTKT
is defined as the scaling dimension of the dynamic variablt.
If we suppose that this scaling relation also holds forM p(t)
andMn(t) separately, choosingb5t1/z we easily get

e
s

e

FIG. 5. Time evolution of the angular distributionP(u) of spins
on positive links~represented by the circled lines! and on negative
links ~represented by dotted lines!. From bottom to top~looking at
the central part of the curves!, the four lines represent distribution
at 20, 200, 2000, and 20 000 Monte Carlo time steps, respectiv
for both kinds of lines. The two overlapping solid lines are those
t50. The scale forP(u) is chosen in such a way that for spin
distributed homogeneously in all directionsP(u)[1 for uP
@2p,p#.
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r ~ t !5
M p~ t,m0!

Mn~ t,m0!
5F~m0tx0 /z!. ~7!

As a function ofm0tx0 /z, if r (t) does not depend ont, it
should also not depend onm0. Further,r (t) should not de-
pend on the temperature when the temperature is belowTKT ,
according to the scaling form~7!. In the limit T50, the spin
configuration will be apparently frozen in the ground sta
Therefore,r (t) takes the constant value as in the grou
state.

To understand more about the effect of the initial config
ration, we now divide the lattice intotwo sublattices: the
sublattice on the positive links and the one on the nega
links. We have performed a simulation with different initi
magnetizations for the two sublattices,m0p andm0n , respec-
tively. We take, for example,m0p /m0n5r th and keep the
global initial magnetizationm050.02. We call this thetwo-
sublattice start.

The way to prepare such initial configurations is similar
that of the global start. The difference is that the initial e
ternal magnetic field for the spins on positive links ishp and
that on negative links ishn . Both are in thex direction and
the ratio hp /hn is chosen to ber th . The time-dependen
magnetizations with this initial condition are plotted in Fi
6. The solid line is the global magnetization, while the upp
and lower dashed lines represent those for the sublattice
the positive links and negative links, respectively. Now t
initial drop for the magnetization on the negative links d
appears. The corresponding ratior (t) is plotted also in Fig. 4
with the dotted line. It remains constant from almost the v
beginning of the time evolution. The averaged value isr
52.4146(6). However, the time period for the magnetizatio

FIG. 6. Time evolution of the magnetization with the tw
sublattice start forL564 andm050.02 with the Metropolis algo-
rithm plotted on a double-logarithmic scale.M (t) is thex compo-

nent of the magnetizationMW (t). The solid line represents the glob
magnetization, while the dashed lines are those for the sublatt
For comparison, the dotted line is the global magnetization with
sharp preparation of the initial magnetizations. The inset descr
the behavior of the magnetization at the very beginning of the e
lution.
.
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to enter the universal power-law behavior is again 20–
almost the same as that in Fig. 2.

Before going further we would like to mention the pro
lem of thesharp preparationof the initial magnetization. If
the lattice size is infinity, in each initial configuration gene
ated by the initial HamiltonianH0, an exact value (m0,0) of
the initial magnetizationMW (0) is automatically achieved
However, the practical lattice size is finite and the init
magnetizationMW (0) fluctuates around (m0,0). This is a kind
of extra finite-size effect. It causes a problem in a hig
precision measurement. In order to reduce this effect, a s
preparation technique has been introduced@7,8,26#. How im-
portant the sharp preparation is depends on the initial m
netizationm0 and what kind of observables one measur
The smaller the initial magnetizationm0, the more important
the sharp preparation becomes. In Fig. 6 the result for
time evolution of the magnetization with the sharp prepa
tion technique has been plotted with the dotted line. T
curve almost overlaps with that without the sharp prepara
technique. This shows that the extra finite-size effect her
already quite small for the lattice sizeL564. For simplicity,
our simulations are always carried out with no sharp pre
ration of the initial magnetization.

Now we go a step further. From the numerical simulatio
shown in Figs. 2, 4, and 6 and the discussions above,
understand that the universal behavior of the dynamic sys
is closely related to the structure of the ground states. If
initial state is completely random with zero initial magne
zation, the probabilities for the magnetization to evolve
different directions are the same and the averaged mag
zation remains zero. However, if a nonzero initial magne
zation is given in a certain direction, the time-depend
magnetization grows in this direction since the energy is
favor of it. To clarify this point, we start with an initial stat
that is even closer to the ground state. We prepare diffe
initial magnetizations for thefour sublattices, aligning them
parallel to the spins in the ground state shown in Fig. 1.
the magnitudes of the initial magnetizations arem050.02.
We call this initial state thefour sublattice start. The time
evolution of the magnetizations for different sublattices
shown in Fig. 7. HereM (t) is just the projection of the
magnetization in the direction of the initial magnetization
each sublattice. The solid line and dotted line are the m
netizations for the sublattices on the positive links, while t
circles and crosses are those on the negative links. T
collapse on a single line and show completely the same
versal behavior.

In Table I values for the critical exponentu measured in a
time interval@40,150# for the three different initial states ar
collected. Within the statistical errors they are consistent

IV. UNIVERSALITY AND SCALING

In the numerical measurement of the critical exponenu
we should pay attention to two possible effects: the fini
size effect and the finite-m0 effect. For the dynamic proces
discussed in the preceding section, there are two kinds
finite-size effects. One is the extra finite-size effect from t
initial configurations. This extra finite-size effect is close
related to the problem of the sharp preparation of the ini
configurations and was discussed in Sec. III.
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Another kind of finite-size effect is the normal finite-siz
effect that takes place in a time scaletL;Lz. Whenever the
system evolves into this time regime, the magnetization w
decay by an exponential law exp(2t/tL). In order to see the
normal finite-size effect, we have plotted on a doub
logarithmic scale the time evolution of the magnetization
the lattice sizesL58, 16, 32, 64, and 128 with initial mag
netizationm050.02 in Fig. 8. The upper solid line is th
time-dependent magnetization forL564, while the dotted
lines are those forL58, 16, 32, and 128, respectively. Th
curves forL564 andL5128 more or less overlap. The va
ues for the critical exponentu areu50.181(5) and 0.182(3)
for L564 andL5128, respectively. Therefore, we conclud
that the finite-size effect here is already negligibly small
the lattice sizeL564.

Rigorously speaking, the critical exponent is defined
the limit m050. However, it is practically only possible t
perform the measurement with a finitem0. The exponentu
measured may show some dependence on the initial ma
tizationm0. In general, an extrapolation~linear or nonlinear!
to the limit of m050 should be carried out@8,26#. For this
purpose, we perform another simulation for the lattice s
L564 and with an initial magnetizationm050.01. The time-

FIG. 7. Time evolution of the magnetization with the fou
sublattice start forL564 andm050.02 with the Metropolis algo-
rithm plotted on a double-logarithmic scale.M (t) is the projection

of the magnetizationMW (t) on the initial direction. The solid and
dotted line are the magnetizations for the sublattices on the pos
links, while the circles and crosses represent those on the neg
links.

TABLE I. Exponent u measured for lattice sizeL564 with
different types of initial configurations and algorithms. I, II, and
represent initial states of the global start, two sublattice start,
four sublattice start.

Metropolis Heat bath

I II III II

0.184~6! 0.182~5! 0.181~5! 0.186~6!
ll

-
r

r

e-

e

dependent magnetization is also displayed with the low
solid line in Fig. 8. The values for the exponentu obtained
for m050.02 andm050.01 areu50.181(5) and 0.179~7!,
respectively. Within the statistical errors, they cover ea
other. The dependence of the exponentu on m0 is already
rather weak here; an extrapolation is not necessary. Th
also the reason why the results with and without the sh
preparation of the initial magnetization are not so differe
In the further discussion in this paper we will restrict ou
selves mostly toL564 andm050.02.

FIG. 9. Time evolution of the magnetization for different initia
states and algorithms plotted on a double-logarithmic scale.M (t) is

the projection of the magnetizationMW (t) in the initial direction. The
solid line represents the magnetization forL564 and m050.01
with the heat-bath algorithm and the two-sublattice start, wh
long-dashed, dashed, and dotted lines are those forL564 andm0

50.02 with the Metropolis algorithm for the global, two-sublattic
and four-sublattice starts, respectively.

ve
ive

d

FIG. 8. Time evolution of the magnetization with the fou
sublattice start for differentL andm0 with the Metropolis algorithm
plotted on a double-logarithmic scale.M (t) is the projection of the

magnetizationMW (t) in the initial direction. The solid line represent
the magnetization forL564, while dotted lines are those for othe
lattice sizes.
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Is the power-law scaling behavior in Eq.~1! for the mag-
netization really universal? For example, can it depend
the microscopic details of the initial state, the algorithms,
lattice types, or even the additional non-nearest interactio
Many discussions of this kind have been made rece
@26,27,10,4,28#. Here we have also repeated some calcu
tions with the heat-bath algorithm to confirm universali
The result forL564 andm050.02 with the two-sublattice
start is plotted in Fig. 9 with the solid line. The initial mag
netizationsm0p and m0n are given to the sublattices on th
positive links and the negative links, respectively, w
m0p /m0n5r th52.4142. The long-dashed, dashed, and d
ted line are the results with the Metropolis algorithm with t
global start, the two-sublattice start, and the four-sublat
start, respectively. All the measured values for the co
sponding exponentu are listed in Table I. The fact that a
the four curves give consistent values for the exponenu
within the statistical errors provides strong support for u
versality. In particular, that the exponentu is independent of
the initial states indicates that some physical mechan
closely related to the ground states essentially governs
time evolution of the dynamic systems.

To understand universality in the short-time dynamics,
keep in mind that there are two very different time scales
the dynamic systems: the microscopic time scale and
macroscopic time scale. The typical macroscopic time sc
is tt or tL . Universal behavior emerges only after a suf
ciently long time period in the microscopic sense. Such
time period that the dynamic system needs to sweep a
the microscopic behavior is calledtmic . One expects that the
time scaletmic is still very short in the macroscopic sense.
numerical simulations, a Monte Carlo time step can be c
sidered as a typical microscopic unit. Most numerical sim
lations for dynamic systems show thattmic;10250. In Fig.
9 we see that this is also the case for the FFXY model. Th

FIG. 10. Time evolution of the magnetization forL564 and
m050.02 with different temperatures plotted on a doub
logarithmic scale. The four-sublattice start and the Metropolis al
rithm are used in the simulations.M (t) is the projection of the

magnetizationMW (t) in the initial direction. From top to bottom, th
temperature isT50.250, 0.300, 0.350, 0.400, 0.420, 0.440, a
0.446, respectively.
n
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results are reasonable. Compared to the typical macrosc
time scalett or tL , the microscopic time scaletmic observed
in numerical simulations is indeed very small. In some cas
universal behavior emerges actually in one Monte Carlo ti
step, e.g., in the numerical measurement of the critical ex
nent u for the two-dimensional Potts model@8,26#. Such a
clean behavior in the very-short-time regime is someh
unexpected.

It is well known that for theXY-like phase transition no
real long-order emerges even below the transition temp
ture TKT . The system remains critical in the sense that
correlation length is divergent. A similar scaling behavior
expected for any temperature belowTKT . However, the criti-
cal exponents may vary with respect to the temperature
Fig. 10 the time evolution of the magnetization for differe
temperatures is displayed. We clearly see there exists po
law behavior for all the temperatures belowTKT . However,
the critical exponentu varies essentially as can be seen fro
the results given in Table II. The dependence of the criti
exponentu on the temperature for the FFXY model is qua
tatively the same but stronger than that for the regularXY
model @10#. As the temperature decreases, the exponenu
first increases and then slowly decreases. At theXY-like
transition temperatureTKT50.446 @15# @or 0.440~2! in Ref.
@20##, the exponentu50.060(7) is quite small compared t
u50.250(1) for theXY model at the critical temperatur
TKT50.90. Therefore, the power-law behavior around t
critical temperatureTKT is less prominent compared to th
for theXY model and also that at the lower temperature. W
have performed some simulations with temperatures ab
TKT too. Since the correlation length is divergentexponen-
tially when the temperature approaches from above
XY-like transition point, however, no rigorous informatio
for theXY-like transition temperatureTKT could be obtained
from our data. Further investigation along this direction
needed.

V. CONCLUSIONS

We have numerically simulated the dynamic relaxati
process of the fully frustratedXY model in two dimensions
starting from an initial state with a very high temperature a
small initial magnetization. Special attention has been put
the sublattice structure of the dynamic evolution induced
the ground state. The universal power-law behavior is fou

TABLE II. Exponent u measured for different temperature
with the Metropolis algorithm. The lattice size isL564.

T u

0.446 0.060~7!

0.440 0.079~4!

0.420 0.141~5!

0.400 0.181~5!

0.350 0.245~3!

0.300 0.263~2!

0.250 0.260~2!

-
-
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independently of the sublattice structure of the initial stat
The critical exponentu has been measured for different tem
peratures belowTKT . Universality has been further con
firmed by carrying out the simulations with both the M
tropolis and the heat-bath algorithm. Many importa
problems remain open in connection to the present pa
e.g., the short-time behavior of the dynamic FFXY mod
with respect to the Ising-like phase transition and the de
ev

A

s.

t
r,

l
r-

mination of the critical point as well as other critical exp
nents from the short-time dynamics.
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